原來想做個金屬檢測器,一直沒搞成,無意找到個這玩意,搬運過來給有興趣的做個參考,有這個板子的和懂這個程序的可以驗證下這個是不是真的可行,提供的那個。原文是英文看不懂干脆用翻譯軟件翻譯成中文在后面,正文開始:
Arduino Metal Detector with Metal Discrimination
In this article, we will consider the creation of a metal detector based on the Arduino board with the ability to discriminate metals. This metal detector will be able to detect small metal objects (for example, coins) at a depth of up to 15 cm, and large metal objects it will be able to detect at a depth of up to 50 cm (and even more). It will also be able to distinguish iron-containing metals (ferrous) from non-ferrous metals (nonferrous). The metal detector has a fairly simple design and at the same time it provides acceptable sensitivity.
Earlier on our website we reviewed a project of a simple metal detector on Arduino , we recommend reading it to understand the principle of operation of a metal detector.
Necessary components- Arduino Nano board
- LCD display 16×2
- Operational amplifier TL081 or 741, LT1677 will also work (used by the author of the project)
- Speaker 0.25 W, 8 Ohm.
- General purpose transistor NPN type.
- Induction coil – 2 pcs.
- Potentiometer 10 kOhm
- Capacitors and resistors (as per the diagram below).
- Switches.
- Battery.
Project schemeThe circuit diagram of the metal detector on Arduino with metal discrimination is shown in the following figure.
When metal is detected, the device will emit a sound signal, and the LCD display will display the proximity of the metal using a bar graph, as well as indicate the type of metal – iron (ferrous) or non-ferrous (non-ferrous). The device is an induction-balanced metal detector operating at a very low frequency (VLF). The metal detector contains a transmitting and receiving inductance coil. As in all circuits of similar detectors, the balance between the coils is very important for our device. The potentiometer in the detector circuit is used to eliminate the influence of the out-of-phase component of the signal – it brings the phase shift to zero, and the in-phase component is zeroed using the appropriate arrangement of the coils – according to the operating principle of IB detectors.
Each induction coil is made by winding 64 turns of 0.5 mm2 enameled copper wire onto a D shape with a diameter of 11 cm. The coil structure is then wrapped with tape and shielded with aluminum foil, after which tinned copper wire is attached to it – it is necessary to leave a small gap in the foil to attach it. After that, both coils are fixed to a plastic base. The appearance of the assembled induction coils for the metal detector is shown in the following figure.
You can watch the assembly process in more detail in the video provided at the end of the article. The appearance of the assembled metal detector structure is shown in the following figure.
To set up the project, we first need to determine the resonant frequency of the oscillatory circuit in our circuit. To do this, you can use the formula known from the physics course, online calculators, or you can measure it with an oscilloscope. If you assembled the coils in the described way, then the resonant frequency of our circuit should be approximately 7.64 kHz. If you received a different resonant frequency value, then you need to make the appropriate changes to the next line of the program:
- #define TIMER1_TOP (249) // fine-tune the frequency
復制代碼
As you can see in the video below, the results of the metal detector were quite impressive. In the absence of metal, the device shows stable operation. A metal circle with a diameter of 15 cm is detected at a distance of more than 30 cm. Larger metal objects are detected at distances exceeding 40-50 cm. A small coin can be detected at a distance of 15 cm (in the air). To power the metal detector, the author of the project used two lithium batteries, which, when connected in series, provide a supply voltage of 7.4 V – this voltage is supplied to the Vin contact of the Arduino board. The power consumption of the device does not exceed 20 mA, so it will work for quite a long time from such batteries. To significantly increase the sensitivity of the metal detector, the author of the project proposes to control the transmitting coil using a powerful MOSFET transistor – in the future, he plans to publish the results of such an experiment on the project page.
Note : recommendations for practical assembly of this metal detector project from an active reader of our site named Alexander with a description, photographs and video can be downloaded fromthe following link .
Source code of the program (sketch)
- // Induction balance metal detector
- // We run the CPU at 16MHz and the ADC clock at 1MHz (АЦП работает на 1 МГц). ADC resolution is reduced to 8 bits at this speed. (разрешение АЦП уменьшено до 8 бит)
- // Timer 1 is used to divide the system clock by about 256 to produce a 62.5kHz square wave. (Таймер 1 использовается для формирования прямоугольных импульсов с частотой 62,5 кГц)
- // This is used to drive timer 0 and also to trigger ADC conversions.
- // Timer 0 is used to divide the output of timer 1 by 8, giving a 7.8125kHz signal for driving the transmit coil.
- // Таймер 0 делит выход таймера 1 на 8, и, таким образом, формирует сигнал частотой 7.8125kHz для управления передающей катушкой
- // This gives us 16 ADC clock cycles for each ADC conversion (it actually takes 13.5 cycles), and we take 8 samples per cycle of the coil drive voltage.
- // The ADC implements four phase-sensitive detectors at 45 degree intervals. Using 4 instead of just 2 allows us to cancel the third harmonic of the
- // coil frequency.
- // Timer 2 will be used to generate a tone for the earpiece or headset. (таймер 2 используется для генерации тона для наушников)
- // Other division ratios for timer 1 are possible, from about 235 upwards.
- // Wiring:
- // Connect digital pin 4 (alias T0) to digital pin 9
- // Connect digital pin 5 through resistor to primary coil and tuning capacitor
- // Connect output from receive amplifier to analog pin 0. Output of receive amplifier should be biased to about half of the analog reference.
- // When using USB power, change analog reference to the 3.3V pin, because there is too much noise on the +5V rail to get good sensitivity.
- #include <LiquidCrystal.h>
- #include <LcdBarGraph.h>
- #define max_ampAverage 200
- LiquidCrystal lcd(6, 7, 10, 11, 12, 13);
- LcdBarGraph lbg(&lcd, 16, 0, 1);
- #define TIMER1_TOP (259) // can adjust this to fine-tune the frequency to get the coil tuned (see above) (это значение используется для точной настройки частоты катушки)
- #define USE_3V3_AREF (1) // set to 1 of running on an Arduino with USB power, 0 for an embedded atmega28p with no 3.3V supply available
- // Digital pin definitions
- // Digital pin 0 not used, however if we are using the serial port for debugging then it’s serial input
- const int debugTxPin = 1; // transmit pin reserved for debugging (передающий контакт, зарезервированный для целей отладки)
- const int encoderButtonPin = 2; // encoder button, also IN0 for waking up from sleep mode
- const int earpiecePin = 3; // earpiece, aka OCR2B for tone generation
- const int T0InputPin = 4;
- const int coilDrivePin = 5;
- const int LcdRsPin = 6;
- const int LcdEnPin = 7;
- const int LcdPowerPin = 8; // LCD power and backlight enable
- const int T0OutputPin = 9;
- const int lcdD4Pin = 10;
- const int lcdD5Pin = 11; // pins 11-13 also used for ICSP
- const int LcdD6Pin = 12;
- const int LcdD7Pin = 13;
- // Analog pin definitions (используемые аналоговые контакты)
- const int receiverInputPin = 0;
- const int encoderAPin = A1;
- const int encoderBpin = A2;
- // Analog pins 3-5 not used
- // Variables used only by the ISR
- int16_t bins[4]; // bins used to accumulate ADC readings, one for each of the 4 phases (используются для хранения значений, считываемых с АЦП)
- uint16_t numSamples = 0;
- const uint16_t numSamplesToAverage = 1024;
- // Variables used by the ISR and outside it
- volatile int16_t averages[4]; // when we’ve accumulated enough readings in the bins, the ISR copies them to here and starts again
- volatile uint32_t ticks = 0; // system tick counter for timekeeping
- volatile bool sampleReady = false; // indicates that the averages array has been updated
- // Variables used only outside the ISR
- int16_t calib[4]; // values (set during calibration) that we subtract from the averages (значения, устанавливаемые во время калибровки, в дальнейшем мы их вычитаем из средних значений)
- volatile uint8_t lastctr;
- volatile uint16_t misses = 0; // this counts how many times the ISR has been executed too late. Should remain at zero if everything is working properly.
- const double halfRoot2 = sqrt(0.5);
- const double quarterPi = 3.1415927/4.0;
- const double radiansToDegrees = 180.0/3.1415927;
- // The ADC sample and hold occurs 2 ADC clocks (= 32 system clocks) after the timer 1 overflow flag is set.
- // This introduces a slight phase error, which we adjust for in the calculations.
- const float phaseAdjust = (45.0 * 32.0)/(float)(TIMER1_TOP + 1);
- float threshold = 5.0; // lower = greater sensitivity. 10 is just about usable with a well-balanced coil.
- // The user will be able to adjust this via a pot or rotary encoder. (эту границу можно сделать настраиваемой с помощью потенциометра или энкодера)
- void setup()
- {
- lcd.begin(16, 2);// LCD 16X2
- pinMode(encoderButtonPin, INPUT_PULLUP);
- digitalWrite(T0OutputPin, LOW);
- pinMode(T0OutputPin, OUTPUT); // pulse pin from timer 1 used to feed timer 0
- digitalWrite(coilDrivePin, LOW);
- pinMode(coilDrivePin, OUTPUT); // timer 0 output, square wave to drive transmit coil
-
- cli();
- // Stop timer 0 which was set up by the Arduino core
- TCCR0B = 0; // stop the timer
- TIMSK0 = 0; // disable interrupt
- TIFR0 = 0x07; // clear any pending interrupt
-
- // Set up ADC to trigger and read channel 0 on timer 1 overflow
- #if USE_3V3_AREF
- ADMUX = (1 << ADLAR); // use AREF pin (connected to 3.3V) as voltage reference, read pin A0, left-adjust result
- #else
- ADMUX = (1 << REFS0) | (1 << ADLAR); // use Avcc as voltage reference, read pin A0, left-adjust result
- #endif
- ADCSRB = (1 << ADTS2) | (1 << ADTS1); // auto-trigger ADC on timer/counter 1 overflow
- ADCSRA = (1 << ADEN) | (1 << ADSC) | (1 << ADATE) | (1 << ADPS2); // enable adc, enable auto-trigger, prescaler = 16 (1MHz ADC clock)
- DIDR0 = 1;
- // Set up timer 1.
- // Prescaler = 1, phase correct PWM mode, TOP = ICR1A
- TCCR1A = (1 << COM1A1) | (1 << WGM11);
- TCCR1B = (1 << WGM12) | (1 << WGM13) | (1 << CS10); // CTC mode, prescaler = 1
- TCCR1C = 0;
- OCR1AH = (TIMER1_TOP/2 >> 8);
- OCR1AL = (TIMER1_TOP/2 & 0xFF);
- ICR1H = (TIMER1_TOP >> 8);
- ICR1L = (TIMER1_TOP & 0xFF);
- TCNT1H = 0;
- TCNT1L = 0;
- TIFR1 = 0x07; // clear any pending interrupt
- TIMSK1 = (1 << TOIE1);
- // Set up timer 0
- // Clock source = T0, fast PWM mode, TOP (OCR0A) = 7, PWM output on OC0B
- TCCR0A = (1 << COM0B1) | (1 << WGM01) | (1 << WGM00);
- TCCR0B = (1 << CS00) | (1 << CS01) | (1 << CS02) | (1 << WGM02);
- OCR0A = 7;
- OCR0B = 3;
- TCNT0 = 0;
- sei();
-
- while (!sampleReady) {} // discard the first sample (отбрасываем первый отсчет)
- misses = 0;
- sampleReady = false;
-
- Serial.begin(19200);
- }
- // Timer 0 overflow interrupt (прерывание от таймера 0). This serves 2 purposes: (служит для 2-х целей)
- // 1. It clears the timer 0 overflow flag. If we don’t do this, the ADC will not see any more Timer 0 overflows and we will not get any more conversions.
- // 2. It increments the tick counter, allowing is to do timekeeping. We get 62500 ticks/second.
- // We now read the ADC in the timer interrupt routine instead of having a separate comversion complete interrupt.
- ISR(TIMER1_OVF_vect)
- {
- ++ticks;
- uint8_t ctr = TCNT0;
- int16_t val = (int16_t)(uint16_t)ADCH; // only need to read most significant 8 bits (нам нужно считывать только 8 наиболее значащих бит)
- if (ctr != ((lastctr + 1) & 7))
- {
- ++misses;
- }
- lastctr = ctr;
- int16_t *p = &bins[ctr & 3];
- if (ctr < 4)
- {
- *p += (val);
- if (*p > 15000) *p = 15000;
- }
- else
- {
- *p -= val;
- if (*p < –15000) *p = –15000;
- }
- if (ctr == 7)
- {
- ++numSamples;
- if (numSamples == numSamplesToAverage)
- {
- numSamples = 0;
- if (!sampleReady) // if previous sample has been consumed
- {
- memcpy((void*)averages, bins, sizeof(averages));
- sampleReady = true;
- }
- memset(bins, 0, sizeof(bins));
- }
- }
- }
- void loop()
- {
- while (!sampleReady) {}
- uint32_t oldTicks = ticks;
-
- if (digitalRead(encoderButtonPin) == LOW)
- {
- // Calibrate button pressed. We save the current phase detector outputs and subtract them from future results.
- // This lets us use the detector if the coil is slightly off-balance.
- // It would be better to everage several samples instead of taking just one.
- for (int i = 0; i < 4; ++i)
- {
- calib[i] = averages[i];
- }
- sampleReady = false;
- Serial.print(“Calibrated: “);
-
- lcd.setCursor(0,0);
- lcd.print(“Calibrating… “);
- for (int i = 0; i < 4; ++i)
- {
- Serial.write(‘ ‘);
-
- Serial.print(calib[i]);
-
- lcd.setCursor(0,1);
- lcd.print(‘ ‘);
- lcd.print(calib[4]);
- lcd.print(” “);
- }
- Serial.println();
- }
- else
- {
- for (int i = 0; i < 4; ++i)
- {
- averages[i] -= calib[i];
- }
- const double f = 200.0;
-
- // Massage the results to eliminate sensitivity to the 3rd harmonic, and divide by 200
- double bin0 = (averages[0] + halfRoot2 * (averages[1] – averages[3]))/f;
- double bin1 = (averages[1] + halfRoot2 * (averages[0] + averages[2]))/f;
- double bin2 = (averages[2] + halfRoot2 * (averages[1] + averages[3]))/f;
- double bin3 = (averages[3] + halfRoot2 * (averages[2] – averages[0]))/f;
- sampleReady = false; // we’ve finished reading the averages, so the ISR is free to overwrite them again
- double amp1 = sqrt((bin0 * bin0) + (bin2 * bin2));
- double amp2 = sqrt((bin1 * bin1) + (bin3 * bin3));
- double ampAverage = (amp1 + amp2)/2.0;
-
- // The ADC sample/hold takes place 2 clocks after the timer overflow
- double phase1 = atan2(bin0, bin2) * radiansToDegrees + 45.0;
- double phase2 = atan2(bin1, bin3) * radiansToDegrees;
-
- if (phase1 > phase2)
- {
- double temp = phase1;
- phase1 = phase2;
- phase2 = temp;
- }
-
- double phaseAverage = ((phase1 + phase2)/2.0) – phaseAdjust;
- if (phase2 – phase1 > 180.0)
- {
- if (phaseAverage < 0.0)
- {
- phaseAverage += 180.0;
- }
- else
- {
- phaseAverage -= 180.0;
- }
- }
-
- // For diagnostic purposes, print the individual bin counts and the 2 indepedently-calculated gains and phases
- Serial.print(misses);
- Serial.write(‘ ‘);
-
- if (bin0 >= 0.0) Serial.write(‘ ‘);
- Serial.print(bin0, 2);
- Serial.write(‘ ‘);
- if (bin1 >= 0.0) Serial.write(‘ ‘);
- Serial.print(bin1, 2);
- Serial.write(‘ ‘);
- if (bin2 >= 0.0) Serial.write(‘ ‘);
- Serial.print(bin2, 2);
- Serial.write(‘ ‘);
- if (bin3 >= 0.0) Serial.write(‘ ‘);
- Serial.print(bin3, 2);
- Serial.print(” “);
- Serial.print(amp1, 2);
- Serial.write(‘ ‘);
- Serial.print(amp2, 2);
- Serial.write(‘ ‘);
- if (phase1 >= 0.0) Serial.write(‘ ‘);
- Serial.print(phase1, 2);
- Serial.write(‘ ‘);
- if (phase2 >= 0.0) Serial.write(‘ ‘);
- Serial.print(phase2, 2);
- Serial.print(” “);
-
- // Print the final amplitude and phase, which we use to decide what (if anything) we have found)
- if (ampAverage >= 0.0) Serial.write(‘ ‘);
- Serial.print(ampAverage, 1);
- Serial.write(‘ ‘);
-
- lcd.setCursor(0,0);
- lcd.print(” “);
- lcd.print(ampAverage);
- lcd.setCursor(0,1);
- lbg.drawValue(ampAverage, max_ampAverage);
- if (phaseAverage >= 0.0) Serial.write(‘ ‘);
- Serial.print((int)phaseAverage);
-
- // Decide what we have found and tell the user
- if (ampAverage >= threshold)
- {
- // When held in line with the centre of the coil:
- // – non-ferrous metals give a negative phase shift, e.g. -90deg for thick copper or aluminium, a copper olive, -30deg for thin alumimium.
- // Ferrous metals give zero phase shift or a small positive phase shift.
- // So we’ll say that anything with a phase shift below -20deg is non-ferrous.
- if (phaseAverage < –20.0)
- {
- Serial.print(” Non-ferrous”);
- lcd.setCursor(0,0);
- lcd.print(“NonFerous “);
-
- }
- else
- {
- Serial.print(” Ferrous”);
- lcd.setCursor(0,0);
- lcd.print(“Ferrous “);
- }
- float temp = ampAverage;
-
- int thisPitch = map (temp, 10, 200, 100, 1500);
- tone(3, thisPitch,120);
-
- while (temp > threshold)
- {
- Serial.write(‘!’);
- temp -= (threshold/2);
- }
- }
- Serial.println();
-
- }
- while (ticks – oldTicks < 8000)
- {
- }
- }
復制代碼 The LcdBarGraph library used in this sketch can be downloaded from this link . The program code makes extensive use of timers, if you are not very good at these, we recommend reading the Arduino Timers Guide for Beginners .
Video demonstrating the circuit in operation
http://bilibili.com/video/BV1G6ScBUE4W/?spm_id_from=333.337.search-card.all.click
中文的翻譯如下:
本文將介紹如何基于 Arduino 開發板制作一款能夠區分不同金屬的金屬探測器。這款金屬探測器能夠探測到深度達 15 厘米的小型金屬物體(例如硬幣),以及深度達 50 厘米(甚至更深)的大型金屬物體。它還能區分含鐵金屬(鐵質金屬)和非鐵質金屬(非鐵質金屬)。該金屬探測器設計簡潔,同時又具備令人滿意的靈敏度。
此前,我們在網站上介紹過一個 基于 Arduino 的簡易金屬探測器項目 ,建議大家閱讀一下,以了解金屬探測器的工作原理。 必要組件- Arduino Nano 開發板
- LCD 顯示屏 16×2
- 運算放大器 TL081 或 741、LT1677 也適用(項目作者使用)
- 揚聲器 0.25 瓦,8 歐姆。
- 通用型NPN晶體管。
- 感應線圈 – 2 個
- 10 kΩ 電位器
- 電容器和電阻器(如下圖所示)。
- 開關。
- 電池。
項目方案下圖所示為基于 Arduino 的金屬探測器電路圖,該電路具有金屬識別功能。 當檢測到金屬時,該設備會發出聲音信號,液晶顯示屏會用條形圖顯示金屬的接近程度,并指示金屬的類型——鐵(鐵質)或非鐵質(非鐵質)。 該裝置是一款工作頻率極低(VLF)的感應平衡式金屬探測器。金屬探測器包含一個發射電感線圈和一個接收電感線圈。與所有類似探測器的電路一樣,線圈間的平衡對于我們的裝置至關重要。探測器電路中的電位器用于消除信號中反相分量的影響——它將相位偏移降至零,而同相分量則通過適當排列線圈來使其降至零——這符合感應平衡式探測器的工作原理。
每個感應線圈均由64匝0.5平方毫米的漆包銅線繞制而成,繞線形狀為直徑11厘米的D形。線圈結構用膠帶包裹,并用鋁箔屏蔽,之后將鍍錫銅線連接到鋁箔上——需要在鋁箔上留出一個小縫隙以便連接。最后,將兩個線圈固定在塑料底座上。金屬探測器感應線圈的組裝外觀如下圖所示。 您可以在文章末尾提供的視頻中更詳細地了解組裝過程。組裝完成后的金屬探測器結構如下圖所示。 要搭建這個項目,首先需要確定電路中振蕩電路的諧振頻率。你可以使用物理課上學到的公式、在線計算器,或者用示波器測量。如果你按照說明組裝了線圈,那么電路的諧振頻率應該約為 7.64 kHz。如果你得到的諧振頻率值不同,則需要對程序的下一行進行相應的修改: 正如您在下方視頻中所見,金屬探測器的探測結果令人印象深刻。在沒有金屬的情況下,該設備運行穩定。直徑為15厘米的金屬圓片可在30厘米以上的距離被探測到。較大的金屬物體可在40-50厘米以上的距離被探測到。一枚小硬幣(在空中)可在15厘米的距離被探測到。 為了給金屬探測器供電,項目作者使用了兩節鋰電池,串聯后可提供 7.4V 的供電電壓——該電壓被施加到 Arduino 板的 Vin 引腳。該設備的功耗不超過 20mA,因此使用這樣的電池可以長時間工作。 為了顯著提高金屬探測器的靈敏度,該項目的作者提議使用大功率 MOSFET 晶體管來控制發射線圈——未來,他計劃在項目頁面上公布此類實驗的結果。
本程序中使用的 LcdBarGraph 庫
LcdBarGraph-2.0.1.zip
(100.2 KB, 下載次數: 0)
2025-11-30 00:47 上傳
點擊文件名下載附件
下載 。程序代碼大量使用了定時器,如果您對定時器不太熟悉,我們建議您閱讀 《Arduino 定時器入門指南》 。
視頻演示了電路的運行情況
|